Biological network analysis with deep learning
نویسندگان
چکیده
منابع مشابه
Melanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملTraffic Analysis with Deep Learning
Recent advances in learning Deep Neural Network (DNN) architectures have received a great deal of attention due to their ability to outperform state-of-the-art classifiers across a wide range of applications, with little or no feature engineering. In this paper, we broadly study the applicability of deep learning to website fingerprinting. We show that unsupervised DNNs can be used to extract l...
متن کاملModeling Reactivity to Soft, Hard, and Biological Targets with a Deep Learning Network
Unexpected drug toxicity is a critical problem for the pharmaceutical industry. Toxicity problems cause around 40% of drug candidates to be discontinued, oftentimes only after significant resources have been invested. Furthermore, drug-induced liver injury (DILI) is the most common reason already approved drugs are withdrawn from the marker, and causes half of all cases of acute liver failure, ...
متن کاملModeling Reactivity to Biological Macromolecules with a Deep Multitask Network
Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn...
متن کاملA Deep Hashing Learning Network
Hashing-based methods seek compact and efficient binary codes that preserve the neighborhood structure in the original data space. For most existing hashing methods, an image is first encoded as a vector of hand-crafted visual feature, followed by a hash projection and quantization step to get the compact binary vector. Most of the hand-crafted features just encode the low-level information of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Briefings in Bioinformatics
سال: 2020
ISSN: 1467-5463,1477-4054
DOI: 10.1093/bib/bbaa257